Nonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres

نویسندگان

  • M.J. Mahmoodi Assistant professor, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
  • S. Moghbeli MSc. Student, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
چکیده مقاله:

General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric matrix finally. Considering the capabilities of the presented micromechanical model; the fibers arrangement within the matrix is simulated as square distribution. Representative volume element of the composite system consists of two-phases including shape memory alloys fibers and polymeric matrix which is exposed to axial cyclic mechanical loading. In order to display the effect of fiber activation on the overall response of composite, the behavior of polymeric matrix is assumed elastic and shape memory alloy fibers is considered nonlinear inelastic based on 3-D Lagoudas model is simulated. The model is capable to predict the phase transformation and super elastic behavior of shape memory alloys. In order to develop thermo-mechanical equations of the shape memory alloy in the unit cell model, Newton-Raphson nonlinear numerical solution method is used. In the results, the effects of significant parameters on the thermo-mechanical response of composites are investigated and then the composite thermo-mechanical response is demonstrated in the high and low temperature interval and the effect of shape memory alloy wire activation in the composite is addressed. The presented results show that the composite residual strain in mechanical unloading decreases by enhancing temperature. Therefore, the composite residual strain approaches to zero when the temperature is higher than at which austenite transformation finishes. Comparison between the present research results with available previous researches shows good agreement

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects

Employing the Ginzburg-Landau phase-field theory, a new coupled dynamic thermo-mechanical 3D model has been proposed for modeling the cubic-to-tetragonal martensitic transformations in shape memory alloy (SMA) nanostructures. The stress-induced phase transformations and thermo-mechanical behavior of nanostructured SMAs have been investigated. The mechanical and thermal hysteresis phenomena, loc...

متن کامل

Thermo-mechanical behavior of shape memory alloy made stent- graft by multi-plane model

Constitutive law for shape-memory alloys subjected to multi-axial loading, which is based on a semi-micromechanical integrated multi-plane model capable of internal mechanism observations, is generally not available in the literature. The presented numerical results show significant variations in the mechanical response along the multi loading axes. These are attributed to changes in the marten...

متن کامل

numerical analysis of thermo-mechanical coupling in shape memory alloys

the phase transformation phenomenon due to the crystallographic change of shape memory alloys subjected to mechanical or thermal loading is very complicated. regarding the thermo-mechanical coupling effects in shape memory alloys, in case of high  loading rates, heat generation/absorption during the forward/reverse transformation, will lead in temperature-dependent variation and consequently af...

متن کامل

Finite Volume Analysis of Nonlinear Thermo-mechanical Dynamics of Shape Memory Alloys

In this paper, the finite volume method is developed to analyze coupled dynamic problems of nonlinear thermoelasticity. The major focus is given to the description of martensitic phase transformations essential in the modelling of shape memory alloys. Computational experiments are carried out to study the thermo-mechanical wave interactions in a shape memory alloy rod, and a patch. Both mechani...

متن کامل

An Experimental Setup for Measuring Unstable Thermo-mechanical Behavior of Shape Memory Alloy Wire

An experimental arrangement is demonstrated that overcomes some difficulties in thermo-mechanical testing of thin Shape Memory Alloy (SMA) wires under uniaxial tension. It is now well known that stress-induced transformations in some SMAs under uniaxial loading can lead to mechanical instabilities and propagating phase transformation fronts. Critical parameters, such as nucleation barriers are ...

متن کامل

An Experimental Setup for Measuring Unstable Thermo–mechanical Behavior of a Shape Memory Alloy Wire

An experimental arrangement is demonstrated that overcomes some difficulties in thermo–mechanical testing of thin Shape Memory Alloy (SMA) wires under uniaxial tension. It is now well known that stress–induced transformations in some SMAs under uniaxial loading can lead to mechanical instabilities and propagating phase transformation fronts. Critical parameters, such as nucleation barriers are ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 1

صفحات  49- 59

تاریخ انتشار 2015-05-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023